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Annotatsiya.Ushbu maqolada Boze kondensatsiya yaqinida ximik potensialning 

temperaturaga bog’lanish masalasi nazariy jihatdan tahlil etilgan. Boze kondensatsiyadan pastki 

sathda ushbu bog’lansh mikroskopik tabiatga  ega. Boze kondensatsiyadan yuqori sathlarda esa 

ximik potentsial kondensat zarralari soniga teskari proportsional ekan. 

Kalit so’zlar: Boze kondensatsiya, tenglama, zarrachalar, potentsial. 

*** 

Аннотация.Исследована зависимость химического потенциала от температуры в 

окрестности и ниже точки перехода Бозе конденсации. Следует отметить, что ниже точки 

бозе-конденсации химический потенцал имеет микроскопический порядок. Ниже точки 

бозе-конденсации химический потенциал обратно пропорционален числу частиц 

конденсата. 

Ключевые слов. Бозе конденсация, уравнение,частицы, потенциал 

 *** 

Abstract.In this paper we investigated and the dependence of the chemical potential on 

temperature in the vicinity of and below the transition Bose condensation. It should be noted that 

below the Bose condensation chemical potential has microscopic order. It was shown that below 

bose condensation point chemical potential is inversely proportional to the number of condensate 

particles.  
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 INTRODUCTION 

Distribution function of Bose particles is easy to obtain, considered the 

thermodynamic  potential of the system  

Tln Z,                                                    (1) 
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where the partition function Z in the grand canonical ensemble for a system of 

nevz and moderating particles has the form  
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where k kn the energy of nk particles in state k and 0   is the chemical potential 

[3-5]. Now you can find the average number of particles  
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The expression (2) is the one-particle Bose - Einstein distribution function. The 

energy of one particle, is  
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The total number of particles in gas we obtain, summing up (2) 
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At low temperatures, the properties of a Bose gas are fundamentally different 

from those of a classical system in that the ground state of the system has 

energy E 0  (i.e., all particles are condensed into state k 0   ). According to the 

normalization equation (3), at lower temp and tours chemical potential increases, 

the remaining negative, and up to 0   value at a temperature T0 that satisfies the 

relation  
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Here it is taken into account that    z0

z
dz (z) z ,where z
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  - the Riemann 

zeta function 
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, 3 1 1
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the gamma function From 

(4) we obtain the temperature (as will be seen below, the condensation 

temperature)   
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At lower temperatures T<T0, normalization equation (4) has no solutions 

0  , although they should exist for Bose statistics. This associated with a fact 

that in this case can not move formally from summation to integration in (3). It is 

necessary to take into account the term carefully k 0  , and due to the presence of 

the multiplier  , it drops out of the sum.    

 

However, it is precisely this that is important at low temperatures, since all 

particles condense into the state k 0  . Formally, from (3) may be of a mark that 

during the transition to the limit 0  this term diverges. To solve this problem in 

two ways: firstly, letting μ not to zero but to a small value and, secondly, by 

calculating first number of particles in 0   (for 0T T ), since this value is 

determined by (5) 0   is limiting, of course 
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(здесь использовано определение T0 (7)). Остальные сконденсированные 

в состояние 0   частицы определяются из нормировки(here the definition of 

T0 (3) is used). The remaining condensed state 0   in the particles was 

determined by the normalization condition   
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Fig. 1. The temperature dependence of the number of particles 
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Thus, at a temperature T=T0, the condensation of Bose particles into the 

lowest energy state 0  begins, and the number of condensed particles N0 is 

determined by the power-law dependence (6). Hence, in particular, that with 

decreasing the system temperature from the critical value concentration of particles 

having a zero pulse.  The chemical potential of a Bose gas obeys the equation 
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Above the Bose condensation 0  point, the chemical potential is shown in 

Fig. 2. The transition to the Boltzmann case is carried out if  T  .  

 

RESULTS AND DISCUSSIONS 

We derive an analytic expression for the chemical potential for specified 

limiting case. For this, we present the formula 
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to the next simple form 
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Where we can easily find the expression for the chemical potential,  as 

follows  

Fig. 2. The temperature dependence of the chemical potential 
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Now we find the temperature dependence of the chemical potential  and 

critical temperature Tc. Solving equations (10) - (12) together, we find the 

following expression 
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After simple analytical transformations 
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we find the formula for the chemical potential  
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Thus, we have obtained an expression for the temperature-dependence of 

chemical potential near the critical temperature. It should be noted that below the 

Bose condensation point the chemical potential has microscopic order. Below Bose 

condensation point chemical potential is inversely proportional of the number of 

condensate particles  
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Fig. 3. The temperature dependence of the chemical potential 
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The behavior of the chemical potential in the vicinity of and below the point 

of crossing can be presented following interpolation formula  
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In fig. 3 is a plot of the chemical potentials on temperature in the vicinity of 

and below the point of transition.  

CONCLUSION 

In this paper we investigated and the dependence of the chemical potentials  

of the temperature in the vicinity of and below the transition Bose condensation. It 

should be noted that below the Bose condensation chemical potential a 

microscopic order and inversely proportional to the number of particles 

condensate.  
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