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Abstract 

In this paper, we study the phenomenon of magnetic flux oscillations — the 

oscillation of vortex matter as a result of the thermomagnetic instability of a 

critical state in a superconductor. The spatial and temporal distributions of thermal 

and electromagnetic disturbances in a flat semi-infinite superconducting sample in 

the viscous flow regime with a linear current-voltage characteristic are studied. 
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The stability dynamics of the critical state with respect to magnetic flux jumps in 

hard and composite superconductors was discussed in theoretical and experimental 

works [1-5]. Total the concept of stability of a critical state in type II 

superconductors was developed in the literature [4, 5]. In [5], the dynamics of the 

development of small thermal and electromagnetic disturbances and the 

corresponding stability conditions for the critical state in superconductors in the 

viscous flow regime were studied. Recently, great attention has been paid to the 

phenomenon of magnetic flux oscillations arising as a result of thermomagnetic 

instability in superconductors [6]. In the process of studying the dynamics of 

thermomagnetic instabilities, vibrational modes in the mixed state of a 

superconducting Nb-Ti sample were detected as a result of a catastrophic 

avalanche [7]. To explain the observed oscillation processes, a theoretical model 

was proposed that takes into account the inertial properties of vortex matter [8]. In 

[9], the dynamic properties of vortex matter in an Nb-Ti superconductor were 

studied. Oscillation phenomena were interpreted as the result of the existence of a 

finite value of the effective mass of the vortex, i.e. oscillations can be considered 

as a manifestation of the inertial properties of vortex matter [10]. In this work, the 

phenomenon of magnetic flux oscillations as a result of thermomagnetic instability 

of a critical state in a superconductor is theoretically investigated. 

The system of equations of macroscopic electrodynamics is used to simulate the 

evolution of temperature and electromagnetic field perturbations. The distribution 

of magnetic induction B (r, t)  and transport current j (r, t)  in a superconductor is 

given by the equation 
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In viscous flow regime, the relationship between magnetic induction B (r, t)  and 

electric field E (r, t)   is established by Maxwell's equations 
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The equation of motion of the vortices can be written in the form [6]. 
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where m is the mass of the vortex of unit length, L 0
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   is the magnetic flux quantum, is the upper critical field [1]. Accordingly, 

the temperature distribution in the sample is determined by the heat equation 
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where =ν(T)  and κ=κ(T)  are the heat capacity and thermal conductivity 

coefficients of the sample, respectively. We use the Bean model for the current 

density j(T, E, B) and assume that it does not depend on the magnetic field 

induction, C ej=j (B , T) , i.e.,  C 0 0j =j - a T-T  [1],  ie, [1], where eB  is the value of the 

external magnetic induction;  0 C 0a=j / T -T ; 0j   is the equilibrium current density, 

0T and CT  are the initial and critical temperature of the sample, respectively [5]. We 

assume that the external magnetic field B =(0, 0, eB )  is directed along the z axis 

and the magnetic field velocity is constant eB =const.. For small thermal and 

electromagnetic disturbances  (x,t), b(x,t), v(x,t) exp γt    (where γ  is the eigenvalue 

of the problem), it is easy to obtain the dispersion relation that determines the 

eigenvalue of the problem 
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Here L is the depth of penetration of the magnetic field deep into the 

superconductor [5]. The instability of the magnetic front, as a rule [5], is 

determined by the positive values of the increment Re 0  . Then we can assume 

that the instability arises under the condition Re =0 . Analysis of the dispersion 

relation shows that the growth increment is positive Re 0   if the 

condition Cμ 2    is met. In this case Cμ  , small perturbations increase with 

time and the magnetic flux front is unstable. In the case when the growth increment 

is negative Cμ  and any small perturbation will decay. At a critical value, the 

growth increment is zero  =0  [11]. 

In the particular case when μ = 1, the rise parameter is determined by the stability 

parameter β> 0. Then, the stability criterion can be represented as β> 1. In another 

particular case, when the thermal effects are insignificant (β = 1), the following 

dispersion relation can be obtained 
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Representing the solution of the dispersion equation in the form 

 

b ~ exp (ikx) 

 

we can obtain the dependence of the growth parameter γ on the wave vector k. An 

analysis shows [1] that when k <kc = μ, the growth increment is positive and a 

small perturbation increases with time. For the values of the wave vector k> kc, the 

quantity γ is negative and the small perturbation decays exponentially. It can be 

shown [11] that for k = kc the growth increment is γ = 0. If the wave vector tends to 

zero k → 0 or infinity k → ∞, the quantity γ = 1 and a small perturbation increases. 

In this case, the quantity γ is determined by the value 
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For μ = 0, the value of the growth increment is γ = 0. For μ = 1, the value of γ = 1. 

The dependence of the growth rate of γ on the wave vector is shown in Fig. 1. for 

various values of the parameter μ. As μ increases, the parameter γ increases. At 

certain values of the parameter μ, jumps in the flow are observed, which take into 

account the inertial properties of the vortices. 

 

CONCLUSION 

Thus, in this work, the phenomenon of magnetic flux oscillations is studied 

theoretically — the oscillation of vortex matter as a result of the thermomagnetic 

instability of a critical state in a superconductor. The spatial and temporal 

distributions of thermal and electromagnetic disturbances in a flat semi-infinite 

superconducting sample in the viscous flow regime with a linear current-voltage 

characteristic are studied. 
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